Hay muchos ejemplos de aprendizaje no supervisado. Gracias a este método de aprendizaje, los programas son capaces de aprender las reglas de un juego y diseñar estrategias ganadoras, por lo que pueden utilizarse en el mercado de valores para conseguir beneficios. De este modo, es posible ofrecerle a un programa datos sin procesar sobre las cotizaciones bursátiles para que, por sí mismo, pueda reconocer las actividades de la bolsa y anticipar tendencias.
La inteligencia artificial y, en particular, el aprendizaje no supervisado, ya se utilizan en muchas otras áreas. Por ejemplo, en el marketing es posible determinar los públicos objetivo más relevantes mediante el método del clustering. En este ámbito, la atención se centra en los grupos de personas, que forman la base para desarrollar las estrategias publicitarias. Los algoritmos pueden aprender de forma independiente a agrupar personas con los procedimientos del unsupervised learning.
Un área en la que ya se ha consolidado firmemente el principio del aprendizaje no supervisado es el reconocimiento de voz, imprescindible para el funcionamiento de asistentes de voz como Siri, Alexa o Google Assistant. Estos programas aprenden los hábitos de habla del propietario y, con el tiempo, pueden entender expresiones cada vez más precisas, aunque la persona hable un dialecto o tenga un impedimento del habla.
También muchos smartphones incorporan el unsupervised learning y permiten así ordenar la galería de imágenes. El aprendizaje independiente y sin supervisión permite que el dispositivo reconozca a una misma persona en varias fotos o identifique mediante los metadatos que dos instantáneas han sido tomadas en la misma ubicación. Gracias a este sistema, podemos ordenar las fotos según el lugar donde se tomaron o las personas retratadas en ellas.
En los chats también se ha probado la eficacia del aprendizaje no supervisado. La mayoría de los usuarios de Internet ya se ha topado con algún programachatbot, que se encarga de regular la interacción social en las conversaciones virtuales: así, cuando los bots detectan automáticamente insultos, incitación al odio, discriminación o insultos raciales, eliminan a dicho usuario del chat o le llaman la atención. Aquí la inteligencia artificial también desempeña un papel importante. Los chats automatizados que ofrecen servicio al cliente durante los pedidos en línea funcionan de forma similar: ya sea por mensajería o por teléfono, los bots aprenden de forma autónoma y, en parte, sin supervisión.